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Abstract 
New generation trickling filter systems are evaluated as an energy-efficient way to treat 

wastewater for later reuse. Depending on the reuse application, a trickling filter plant can be 
designed to generate the appropriate effluent quality for different applications such as crop 
fertilization, irrigation, or feed water for subsequent treatment or industrial use. Here carbon 
removal, nitrification or denitrification can be selectively achieved, while conserving scarce 
energy and recycling valuable nutrients. A short review of the state of the art trickling filter 
design and operation with an evaluation of current possibilities and advantages using trickling 
filters for water reuse will be provided. The energy consumption of 3 investigated trickling 
filter plants was 0,057kWh/m³ or 0,175kWh/kg-COD for Batumi tskali WWTP in Georgia, 
0,12kWh/m³ or 0,22kWh/kg-COD for Managua WWTP in Nicaragua and 0,11kWh/m³ or 
0,16kWh/kg-COD in Walvis Bay WWTP in Namibia. Finally a sustainable trickling filter 
configuration is suggested to achieve various reuse goals in the background of varying 
seasonal influent and effluent characteristics. 

INTRODUCTION 
Poor wastewater treatment is one of the biggest enemies of a safe and sustainable water 

supply all over the world. Next to frugal handling of existing water resources, the treatment of 
wastewater towards future reuse is important. Unfortunately, the allusive effect of improving 
water supply through groundwater recharge or surface water improvement must be weighed 
off against the capital cost, the cost of energy demand, and other variable costs of wastewater 
treatment facilities. With the costs per unit energy constantly rising, it is of utmost importance 
that future wastewater treatment preparing wastewater for reuse is energy-efficient. Especially 
in developing countries important points to consider are reliability and simplicity of a 
wastewater treatment process. Low maintenance unit operations are important to ensure a 
continuous treatment of incoming wastewater (Sperling, 1996). 

Up to the 80’s trickling filters have been promoted in the western hemisphere to be an 
energy-efficient process for using microbial systems to treat wastewaters. There, the only 
need for energy is for lifting the effluent by pumping it for distribution on top of the filter. By 
using a hillside for gravitational flow pumping costs can be reduced even further. The water 
then trickles through a bed of suitable media where a biofilm cleans the water. The main 
difference to, for example, an activated sludge system is that the oxygen demand is often 
satisfied by natural ventilation only, without any need for energy intensive aeration and high-
tech equipment. However, with increasing effluent demands and process issues such as media 
clogging in conventional, stone packed trickling filters, along with a poor understanding of 
nutrient removal characteristics coupled to poor modelling of actual processes inside trickling 
filters led to a decline in their use (Parker, 1999).  

Along with newly developed plastic media and the increased importance of sustainability 
the trickling filter is going through a renaissance. Especially in combination with other unit 
operations, such as anaerobic pre-treatment and optimized process design, these new 
generation trickling filter systems are able to treat wastewater to very high standards, while 
offering low energy demand and a high degree of simplicity and robustness. It is for these 
reasons that all over the world new trickling filter projects are implemented, whereby many of 
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them receive funding from institutions such as the KfW (Development loan Corporation, 
Germany) that focus on sustainable development. 

When treating wastewater with the intent to reuse it for various purposes, the goal is often 
not to treat the wastewater to the lowest levels possible. The most economical way would be 
to treat the water exactly to the point of quality required for the reuse goal (Table 1).  

Table 1: Discharge limits for water reuse in various countries with effluent criteria for COD, BOD, NH4 and NO3 
for a selection of regions 
 BOD COD NH4 NO3 
 mg/L mg/L mg/L mg/L 
Jordan1      
Discharge to streams 60 150 15 45 
GW recharge 15 50 5 30 
Cooked vegetables, playgrounds 30 100  30 
Field crops 300 500  45 
Trees, green areas  200 500  45 
EPA2     
Urban reuse (unrestricted public access) 10    
Urban reuse (restricted public access) 30    
Food crops 10    
Non-Food crops 30    
WHO3     
Irrigation of crops likely to be eaten uncooked, 
sports fields, public parks 20    

Irrigation of cereal crops, industrial crops, fodder 
crops, pasture and trees 240    

Kuwait     
Water reuse 20 100 15  
Oman     
Vegetables likely to be eaten raw 15 150 5 50 
Vegetables to be cooked 20 200 10 50 
Dubai4     
Unrestricted irrigation 5 150 5 50 
Restricted irrigation 20 200 10 50 
1(JS: 893/2002) 2(EPA, 2012) 3(WHO, 2006) 4(Dubai Municipality, 2011) 
 

New generation trickling filter technology (N-TF) combined with an intelligent plant 
design and operation will allow a high flexibility. This includes the ability to treat waters to 
effluent quality comparable to AS and AS-BNR processes. Additionally, trickling filters can 
offer the ability to produce a variety of effluents treated to meet specific local needs during 
seasonal variations at very low operational and maintenance costs. A more detailed 
comparison of AS and AS-BNR processes versus N-TF systems is provided by Lempert 
(2013). 

Trickling Filter Process 
A trickling filter is a fixed-growth biofilm treatment system where the wastewater 

“trickles” through a media on which a biofilm grows. The wastewater is distributed at the top 
of the filter with the use of rotating distributor arms that can be either hydraulically or 
electrically driven. Oxygen is provided to the system through ventilation openings at the 
bottom of the filter through which air can freely flow. The media is placed onto a substructure 
usually made out of parallel beams placed on concrete feet. 

In trickling filters heterotrophic and autotrophic bacteria are limited mainly by space, 
assuming oxygen is supplied in excess though ventilation. In the upper section of a trickling 
filter heterotrophic bacteria will use BOD as substrate. Nitrifyers cannot compete due to their 
slow growth and lower metabolic rate. With increasing depth of the trickling filter, BOD 
concentrations decrease to a point where heterotrophic biomass growth is low enough to 
allow nitrifyers to grow (refer to Figure 1). This has been described in many publications 
available (Evans et al, 2004; Parker & Richards, 1986; Pearce & Jarvis, 2011). It is reported 
that nitrification will start when the soluble BOD concentration is below 20mg/L (Parker & 
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Trickling filters can be used for carbon removal, nitrification or denitrification (ATV-
DVWK-A 281). Nitrification can be performed either in the same trickling filter as carbon 
removal or as tertiary treatment in a separate filter. Depending on the process train 
configuration, media and dimension, different treatment goals can be achieved. The treatment 
goal, process design and approximate power consumption is shown in Table 3. 

Table 3: Trickling filter processes and respective approximate energy requirement 
 Treatment Goal Process Design Approximate energy 

requirement for water 
treatment* 

A BOD roughing,  
BOD <40-100mg/L 

High rate Trickling filter Design by loading rate 
(>1,5 Kg/m³-day) 

<0,15kWh/m³ 

B Full BOD removal,    
BOD <10-20 mg/L 

Equation based Filter design (Velz) <0,15kWh/m³ 

C Partial nitrification,      
NH4 <15 

Equation based Filter design (Velz + Gujer/Boller) <0,15kWh/m³ 

D Full Nitrification,       
NH4 <1-2 

Equation based Filter design (Velz + Gujer/Boller) <0,2kWh/m³ (single stage) 
<0,3kWh/m³ (double stage) 

E Partial denitrification, 
50-80% TN rem. 

Equation based Filter design (Velz + Gujer/Boller), 
mass balance for anoxic treatment 

<0,3kWh/m³ 

F Full denitrification,   
>90% TN rem. 

Equation based Filter design (Velz + Gujer/Boller), 
mass balance for anoxic treatment and other post-
treatment (like RO, sand filter, etc.) 

<0,4kWh/m³ 

*A, B and C have identical energy consumption, since only the filter diameter is enlarged to reduce the required 
loading rate to achieve a higher treatment quality. An appropriate recirculation rate to dilute highly loaded influent 
waters is considered. D,E,F include additional pumping needed for the process and not needed for dilution. 

 

(Referring to Table 3 with processes A-F) 

(Process A/B) BOD removal can be achieved using single trickling filters (or many in 
parallel) with media suitable for BOD reduction (Figure 2). Heterotrophic growth produces a 
large amount of biomass. In new generation trickling filters large channel cross flow media is 
often used to avoid clogging. Usually these trickling filters are sized so the volume is not 
enough to allow for nitrification. With this setup, effluent BOD values can reach below 
25mg/L BOD (process B). For partial BOD-removal the filter design must consider oxygen 
limitation and weight due to excess heterotrophic sludge production. Maximum loads of 2,5-
3Kg-BOD/m³-day, high strength vertical channel media and high flushing should be 
considered (Process A). 

(Process C-D) In a trickling filter series, the primary trickling filter for BOD removal 
would be designed to meet a BOD of <25 mg/L (Figure 2). Then the secondary filter can be 
designed using a smaller channel media for increased surface area for higher nitrification 
capacity. An intermediate clarification step may be applied to reduce solids load to the 
nitrification trickling filter. Here, the clogging potential is minimal, since nitrification 
biomass generation is low. This process has been investigated in many publications (Boller & 
Gujer, 1985, Muller et al., 2006, Hu et al, 2003). Trickling filters in series allow for separate 
nitrification (tertiary nitrification). Tertiary trickling filters can also be added to existing AS 
systems to allow for low cost nitrification (Hu et al, 2003, Muller et al., 2006). New 
generation trickling filters allow the design with different types of media layered according to 
anticipated biomass production from large channel cross- or vertical flow media to small 
channel cross flow media. Large channel media can be placed in the top layers for 
heterotrophic growth, and small channel media in the bottom layers for autotrophic growth 
(Figure 2). This setup reduces pumping cost, since the water will not have to be pumped two 
times; instead the first trickling filter is enlarged in diameter to allow for nitrification. 
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Figure 2: Trickling filter configurations from single filter configuration for BOD roughing applications to 
recirculation into anoxic chamber for denitrification. Processes A and B are for BOD removal, Processes C and D 
are for BOD removal and for nitrification, processes E and F are for integrated denitrification. 

 

(Process E/F) Combination of trickling filters for BOD removal and nitrification with an 
anoxic system allows for integrated denitrification (Figure 2). This can be activated sludge 
(Vestner, 2003) or fixed film technologies, as well as sealed trickling filter systems (Dorias, 
1996). While solutions A-D are rather well known and state of the art, the degree of TN 
removal in solution E and F will have a higher degree of complexity, capital and operational 
costs. The degree of denitrification is determined through the amount of recirculated nitrate. 
Special designs of this version can reach TN in the effluent to below 10 mg/L. 

ENERGY CONSUMPTION FOR WATER REUSE 
Water reuse is an option to decrease the energy demand needed for water supply. Water can 

be produced through various processes as seen in Figure 3. Sources for water can be the 
groundwater, from ocean desalters or others. The energy needed per m³ water reaches from 
0,77kWh/m³ when pumped from groundwater up to 3,57kWh/m³ when produced by 
desalination. Water needed for agricultural or other purposes would have to be gathered the 
same way if not reused after treatment.  
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structured media. The trickling filters are sized only for BOD removal; however, partial 
nitrification is taking place. The filtered COD in the effluent of the trickling filter is below 
50mg/L, the incoming COD is approximately 600mg/L. The plant reported an energy 
consumption of 0,12kWh/m³ of treated water. For this treatment 0,22kWh/kg-COD (at ~40% 
nitrification) are used. The power consumed is for the complete treatment train. The results of 
all 3 plants are summarized in Table 4. 

Table 4: Energy consumption of full scale trickling filter systems in Batumi, Managua and Walvis Bay 
Plant/ Source COD-removal COD-removal + nitri. Notes 
 kWh/m³ kWh/ 

kg-COD
kWh/m³ kWh/ 

kg-COD
 

Batumi tskali 
WWTP 

  0,057 
w/o elevation: 
(0,114) 

0,35 
w/o rain: 
(0,175) 

High storm water fraction 
~50%, 
Elevated pre-treatment ~50% 
Values for full plant 
Full Nitrification 

Managua WWTP 0,121 0,22   Values for full plant 
Partial Nitrification 
 

Walvis Bay 
WWTP 

  0,11 0,16 Values for secondary treatment, 
Excl. pre- and post-treatment 
Full Nitrification 
Partially industrial inflow 

 

PROPOSED TRICKLING FILTER CONFIGURATION 
Configuration 

Discussed processes A-F in Table 3 offer a wide possibility of designing a suitable trickling 
filter process for different reuse goals, as needed locally. For an increased flexibility in water 
treatment for reuse a new generation trickling filter configuration is suggested to allow for a 
high degree of flexibility (Figure 4). The configuration includes anoxic treatment, a series of 
Trickling filters and clarifiers. The goal is to produce several different effluent qualities at the 
same time to preserve nutrients when it is needed or to remove them when it is required. 
Additionally the configuration can be adapted to react to varying seasonal conditions as 
needed. 

 
Figure 4: Proposed multi-effluent trickling filter configuration including pretreatment, anoxic tank, trickling filter 
1 and 2 (BOD removal and nitrification), 2 clarifiers, (possible tertiary nitrification or P-removal) and post 
treatment 
1: Inflow after pretreatment, 2: Bypass to Filter 1, 5: Mix-flow to filter 1, 10: Recirculation from filter 2, 11: 
Effluent from Filter 1 after clarification (To post treatment), 13: Effluent from Filter 2 (To post treatment) 
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Trickling filter systems can be designed to offer the most possible flexibility when 
combining them with anoxic treatment. The proposed process consists of an anoxic unit 
designed to allow for >90% denitrification, two parallel trickling filters, one designed to do 
50% nitrification as standalone, and the other one to do 100% nitrification as standalone 
(exemplary case) plus two clarifier units (with optional intermediate clarification). The filters 
consist of optimized corrugated sheet media with reducing channel size from top to bottom 
for media surface area optimization and to avoid clogging. Referring to Figure 4, in the 
anoxic chamber raw influent can be combined with a nitrate rich recirculation flow to allow 
for denitrification. Some of the raw influent can bypass the anoxic chamber to be loaded on 
trickling filter 1 with more BOD to produce a non-nitrified wastewater if needed. The other 
loop would go through the second trickling filter that will do full nitrification. Because the 
water exiting from the anoxic unit will be lower in BOD due to denitrification, it allows 
nitrification in the subsequent filter (for simplicity assuming optimum anoxic conditions). 
This setup creates two effluents, one where only BOD was removed, and the other one which 
would be fully nitrified and denitrified depending on the recirculation ratio. The flows can be 
changed alongside with seasonal inflow and needed effluent characteristics (flushing 
procedures, small operational adaptions or optional aeration in the anoxic unit may be needed, 
but is not considered here).  

When the single unit operations are designed to handle a range of hydraulic loadings, the 
biology inside the trickling filters will shift with decreasing BOD loading from non-nitrifying 
to partial or full nitrification. Pre-treatment (screening etc.) and post-treatment (disinfection 
etc.) would be designed as usual.  

Methods 
The modelling was done using general mass balance concepts to calculate flows. Velz 

equation and Gujer and Boller equations were used to calculate trickling filter performance. 
The calculation of denitrification was simplified to show the concept. The influence of the 
clarifiers was not considered (hence, soluble BOD was investigated).  

For design of trickling filters the Velz equation is used for modelling BOD removal. With a 
temperature correction coefficient the equation is now known as the modified Velz equation 
(WEF, 2000).  ܵܵ = 1exp ൬݇ଶ ∙ ௦ܣ ∙ ܦ ∙ ݍଶି்ߠ ൰ 

Se = soluble BOD concentration in trickling filter effluent [mg/l] 
Sin = soluble BOD concentration in influent to trickling filter [mg/l] 
k20 = reaction rate coefficient at 20 °C [(l/ m2s)n] 
As = specific media area [m2/m3] 
D = media depth [m] 
θ = temperature correction factor (typically set to 1.035) 
T = wastewater temperature (here 20°C) [°C] 
qA = hydraulic loading (including recirculation) [l/ m2s)] 
n = flow exponent (typically set to 0.5) 

 

Nitrification is calculated using a model developed by Gujer and Boller (1986) based on 
mass balance principles.  ܦ ∙ ௦ܣ ∙ ݆ே,௫ሺܶሻݍ = ܵே, − ܵே, + ܰ ∙ ݈݊ ቆܵே,ܵே,ቇ 

As = specific media surface area [m2/ m3] 
jN,max = maximum nitrification rate (here 1,46 at 20°C) [g N / (m2·d)] 
k = empirical factor describing decrease in nitrification rate with D (here 0,11) [m-1] 
qA =  hydraulic load of trickling filter [m3/ (m2·d)] 
N = saturation parameter for substrate limitation (here 1) [g N/ m3] 
SN,i = influent concentration of ammonium, including recirculation [mg/l] 
SN,e = effluent concentration of ammonium [mg/l] 
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Total nitrogen removal can be adjusted by +-5mg/L by setting “flow 2” from 30% to 50%. 
The proposed process allows for example to supply a larger quantity of water with nutrients 
as fertilizer supplement during the summer. During winter a majority of the water can be fully 
treated (full nitrogen removal) suitable for groundwater recharge or surface water discharge. 
In Table 6 these two cases are compared.  

Table 6: Modeling of proposed trickling filter configuration for two reuse settings: setting one with BOD removal, 
nitrification and denitrification and setting two with only BOD removal. 
 Flow: Inflow “Flow 11” “Flow 13” “Flow 11” “Flow 13” 
    Setting 1:  Setting 2:  

“flow 2” %   15% 15% 80% 80% 
“flow 5” %   0% 0% 0% 0% 

“flow 10” %   300% 300% 0% 0% 
Flow L/s 300 45.0 255.0 240.0 60.0 

s-BOD mg/L 140 9.0 8.7 42.6 0.7 
NH4 mg/L 30 3.8 5.2 27.9 0.0 
NO3 mg/L 0 26.2 5.5 2.1 28.6 
TN mg/L 30 30.0 10.6 30.0 28.6 

s-BOD kg/day 42000 404 2220 10222 44 
NH4 kg/day 9000 170 1314 6692 0 
NO3 kg/day 0 1180 1399 508 1714 
TN kg/day 9000 1350 2713 7200 1714 

   Setting1:  Setting1:  

Energy Use kWh/m³   0.19  0.09 
Energy Use kWh/kg-COD   0.33  0.10 

 

In Setting 1 “flow 2” will carry 15% of the influent volume and 300% of nitrified effluent 
is recirculated through the anoxic tank. 255L/s of fully nitrified effluent and a TN 
concentration of <10mg/L is produced. In this case BOD removal is greater than 94%, TN 
removal in sum is greater than 55% (excluding simultaneous denitrification and biomass N 
uptake). By reducing the recirculation (“flow 10”) lesser TN removal could be set. The low 
TN water may be used for surface water recharge or other suitable reuse. In setting 2 the 
recirculation is 0% while “flow 2” carries 80% of the influent. Here 240L/s of water with a 
BOD of 42mg/L is produced and can be used for crop irrigation during growth periods.  

CONCLUSIONS 
1) There is a need for flexible, simple, low maintenance and low energy consuming 

treatment of wastewater for reuse purposes. There is also a need for systems that are 
flexible enough to react to varying reuse needs during seasonal changes. 

2) New generation trickling filter systems can be designed to meet multiple treatment 
goals at effluent qualities comparable to AS or AS-BNR systems. Additionally TF 
systems offer flexible configurations for later add on of nitrification and denitrification. 

3) A flexible trickling filter configuration including anoxic pre-treatment, trickling filters 
and sedimentation was modelled. This system can produce an effluent with a BOD of 
<5mg/L, ammonia of <2mg/L and TN of <10mg/L along with an effluent without N-
removal and BOD of for example 40mg/L. This configuration does not need to have 
multiple treatment trains to achieve multiple effluents, but the ability for flexible flow 
routing. This configuration can react to seasonal variations by adjusting flows inside 
the configuration if necessary. 

4) The production of water can afford up to 3,5kWh/m³ when produced by desalination. 
When groundwater is available 0,77kWh/m³ may be needed for pumping. When 
reusing water from AS processes water can be made available for >0,4kWh/m³ 
depending on sludge age. When reusing water treated by new generation trickling filter 
systems only 0,1-0,2kWh/m³ are needed. 

5) The energy consumption of 3 investigated single stage trickling filter plants was 
0,057kWh/m³ or 0,175kWh/kg-COD (excluding storm water) for Batumi tskali WWTP 
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in Georgia, 0,12kWh/m³ or 0,22kWh/kg-COD for Managua WWTP in Nicaragua and 
0,11kWh/m³ or 0,16kWh/kg-COD in Walvis Bay WWTP in Namibia.  

6) New generation trickling filter systems should be considered when water reuse is 
needed. When reusing water from trickling filter systems the process is be more cost 
effective than by producing water by other means. 
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