Statusseminar zum BMBF-Verbundprojekt EXPOVAL

am 01./02.10.2015 in Hannover

Parasiten im Abwasser –

Problematik und Lösungsansätze für die Wasserwiederverwendung

(Unterverbund 7)

Prof. Dr.-Ing. Peter Cornel Stefan Kneidl, M.Sc.

TU Darmstadt, Institut IWAR Fachgebiet Abwassertechnik

GEFÖRDERT VOM

Präsentationsübersicht

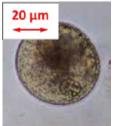
- 1. Helminthen und enzystierte Einzeller
- 2. Problematik für die Wasserwiederverwendung
- 3. Verhalten bei der Abwasserbehandlung
- 4. Lösungsansätze und bisherige Ergebnisse
- 5. Fazit und Ausblick

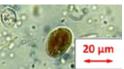
Was sind Parasiten?

Lebewesen, "die zum Zwecke der Nahrungsgewinnung und Fortpflanzung permanent oder temporär <u>in</u> / auf einem andersartigen Lebewesen, dem Wirtsorganismus wohnen und diesen schädigen."

[Aspöck et al., 2006]

Unterscheidung in

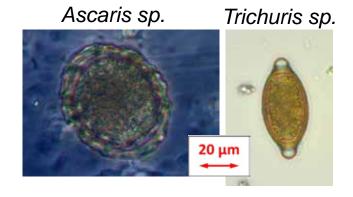

- Ektoparasiten: vorwiegend Arthropoden (z.B. Zecken, Mücken, Läuse)
- Endoparasiten: vorwiegend **Protozoen** (z.B. *Plasmodium spp.* à Malaria) und **Helminthen** (parasitisch lebende Würmer)
- à Protozoen und Helminthen von Relevanz in der Abwasserbehandlung



Protozoen (eukaryotische Einzeller)

- Enzystierte Dauerformen im Abwasser
- Erreger von Darmerkrankungen (meist Diarrhoe)
- Größe:

[Ash und Orihel, 2007] http://illumina-chemie.de


50 – 70 μm (Balantidium coli.); 8 – 19 μm (Giardia intestinalis) bis ca. 5 μm (Cryptosp. coli.)

• Infektionsweg: Orale Aufnahme

Helminthen (parasitisch lebende Würmer)

- Stamm der Nematoden bereits > 20.000 Arten
- Larven und Eier im Abwasser
- Größe: 20 60 μm (relevanter Bereich)
- Infektionswege (vereinfacht):

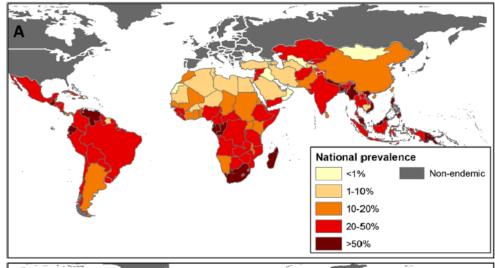
Orale Aufnahme von Larven / Eiern oder kutane Penetration von "Larven"

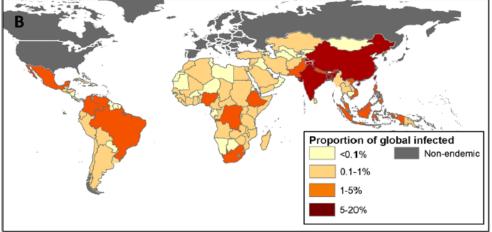
Fokus: "Soil-transmitted helminths" (STH's)

- Mehr als **1,5 Milliarden infizierte Menschen weltweit** [WHO, 2015]
- Über den "Boden" übertragbar
- Sehr hohe Resistenz der Eier gegenüber Umwelteinflüsse / Desinfektion
- Weites Krankheitsbild: (u.a.)
 - Anämie
 - Appetitlosigkeit / Gewichtsverlust
 - Einfluss auf Wachstum und Entwicklung von Kindern
 - Encystierung in Körper / Organen

[Foto: Gathany J., 2007]

à <u>Helminthen:</u> Besonders hohe Relevanz für die Abwasserbehandlung und Wasserwiederverwendung





Prävalenz (2010)

Anteil infizierter Personen

 Anteil infizierter Personen eines Landes an der globalen Infektionsrate

[Pullan et al., 2014]

2. Problematik für die Wasserwiederverwendung

Helminthen-Eier entsprechend der Prävalenz in der ABA nachweisbar

- à Transport der Eier auf Bewässerungsflächen
- à Hohe Überlebensfähigkeit ([Feachem et al., 1983], [Hindiyeh, 2004],[Jiminez-Cisneros, 2007])

Helminthen-Spezies	Überlebenszeit		
(Eier / Larven)	auf Feldfrüchten [d]	in der Bodensubstanz [d]	
Ascaris lumbricoides	ca. 30 (max. 60)	einige Monate	
Trichuris trichiura	ca. 30 (max. 60)	einige Monate	
Larve der Hakenwürmer	ca. 10 (max. 30)	ca. 30 (max. 90)	

- à Hohes Gefährdungspotential für
 - Kinder / Jugendliche und
 - in der Landwirtschaft tätige Personen.

2. Problematik für die Wasserwiederverwendung

Werte im Abwasser in Regionen mit höherer Prävalenz

- < 3000 HO/L im KA-Zulauf (selten höher)
- < 20 HO/L im KA-Ablauf (selten höher)

Grenzwerte für die Wasserwiederverwendung in wenigen Ländern (u.a. Mexiko, Brasilien, Kolumbien und Marokko):

- Meist ≤ 1 HO/L (für uneingeschränkte Anwendung) bis 5 HO/L
- Empfehlung der WHO: ≤ 1 HO/L und ≤ 0,1 HO/L falls direkter Kontakt zu Kindern / Jugendlichen
- Grenzwerte bezogen auf STH's (Ascaris spp., Trichuris spp., Hakenwürmer) sowie entwicklungsfähige Eier / Larven
- à Problematik: Ablaufwerte nicht immer unter Grenzwerten

3. Verhalten bei der Abwasserbehandlung

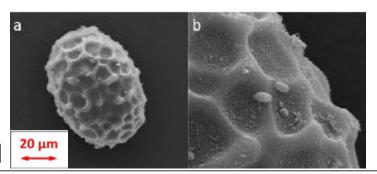
Fragestellung:

Wie verhalten sich die Helminthen-Eier im Abwasserprozess?

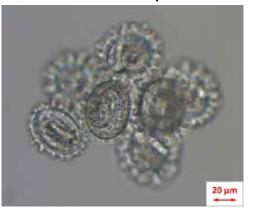
Reduktion der Helminthen-Eier bis zu 100 % möglich
 à jedoch abhängig von Verfahren und Betrieb der Anlage

Verfahren	Reduktionsrate [%] (übliche Praxiswerte)
Vorklärung	< 30 %
UASB-Reaktor	70 bis > 99 %
Teichanlagen	60 bis > 99 %
Belebungsverfahren	85 bis 95 % (z.T. > 99 % bei anschließender Filtration)
Filtration	70 bis 100 %

(Eigene Messungen und Daten von [Jiminez-Cisneros, 2007])



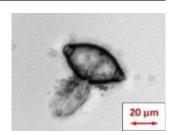
3. Verhalten bei der Abwasserbehandlung

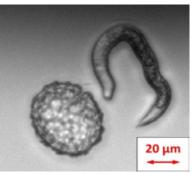


Ursachen / Wirkprinzipien der Abscheidung

- Sedimentation
 - à Spezifische Dichte der Eier: ca. 1,05 bis 1,23 g/cm³
- Anhaftung an Partikel / Schlammflocke
 - "Klebrige" Eigenschaft der Eihülle (insb. Ascaris sp.)
 - Charakteristische Oberflächenstruktur bei Ascaris sp.
 - à Austrag mit Partikel / Schlamm

Ascaris sp.


3. Verhalten bei der Abwasserbehandlung



Zwei grundsätzliche Problemstellungen:

Abwasserbehandlung

- Abtreibender Schlamm / Schwimmschlamm
- Dehnbarkeit der Eier (meist < 40 % des Durchmessers)
- Geringe Wirkung der **Desinfektion** (übliche Dosen)
 - à Chlorung / Ozonung meist 0 bis 20 % (Abtötung)
 - à UV-Bestrahlung meist 0 % (Abtötung)

Analyse der Eier

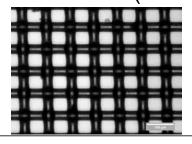
- Noch keine verlässliche, automatisierte und quantitative Analyse (qPCR, ELISA-Test, Bilderkennung, etc.)
- Sehr niedrige Konzentrationswerte à aufwändige Aufbereitung
- Mikroskopische Auswertung à hohes Fehlerpotential

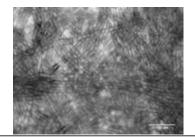
Möglichkeiten zum Abtöten / Abscheiden von Helminthen-Eiern:

- Hohe Temperaturen / lange Behandlungsdauer / geringe Feuchtigkeit
- Sedimentation
- Filtration

Lösungsansatz

- Sedimentation nicht immer geeignet à Anhaftung und Austrag der Eier
- Filtration / Mikrosiebung: Vollständige Abscheidung der Eier möglich!


Laborversuche à Versuchsanlage à großtechnische Validierung


à

à Einsatz von Geweben (PET / Edelstahl) und einem Nadelfilz

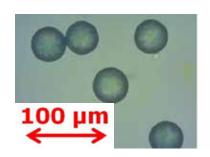
Analyseverfahren modifiziert nach U.S. EPA und UNAM (Mexico City)

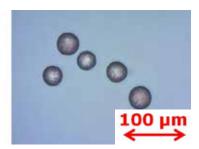
1. Siebung (160 μm à 10 μm)

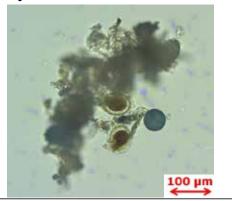
2. Siebrückstand (20 μm und 10 μm)

3. "Aufkonzentrierung" bis Restvolumen ca. 2 - 5 mL *

* ggf. Abtrennung der Helminthen-Eier anhand ihrer spezifischen Dichte 4. MikroskopischeAuswertung (ggf.anfärben / inkubieren)

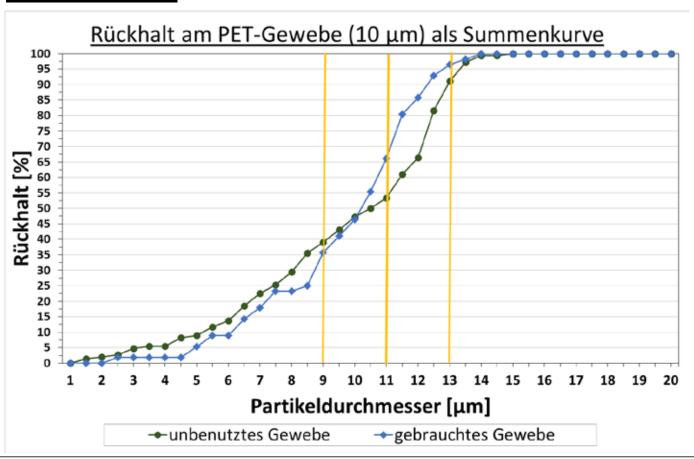






Ersatzpartikel für Helminthen-Eier

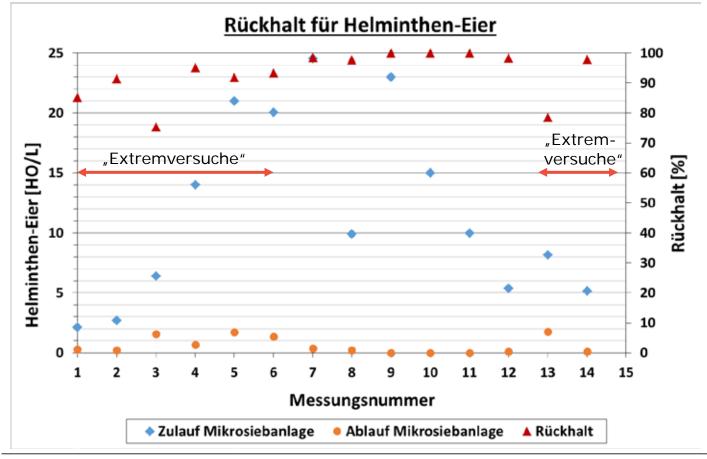
- Häufig stark variierende Konzentration an Eiern und Art der Spezies
- Ziel: Ersatzpartikel für Helminthen-Eier à Material: PE / PMMA / PS
- Eigenschaften
 - Gefärbte, sphärische Partikel mit ähnlicher spezifischer Dichte
 - Identisches Analyseverfahren à parallel zu den Eiern bestimmbar
 - Definierte Größe sowie konstante Dosierbarkeit
 - Ersatzpartikel als Kontrolle der Analyse à Wiederfindungsrate



Laborversuche mit PE/PMMA/PS-Partikel und Helminthen-Eier

Trichuris-Eier am Filtergewebe

Laborversuche mit PE/PMMA/PS-Partikel und Helminthen-Eier


Prozentualer Rückhalt für Helminthen-Eier respektive Larven in Abhängigkeit der Maschenweite						eite		
Maschenweite [µm] (Toleranzen)	54 (50±5)	37	33 (33±3)	20 (21±3)	18 (18±1)	17	15 (15±2)	10 (11±2)
Filtermaterial	PET	Edelstahl	PET	PET	Edelstahl	PET	PET	PET
Ascaris spp.	10,0- 44,0	86,2- 100	96,0- 100	100	100	100	100	100
Trichuris spp.	0,0	71,0	24-75,0	99,1 - 100	94,1 - 100	100	100	100
Taenia spp.	16,6	33,3	83,3	100	100	100	100	100
Hymenolepis spp.	38,2 - 100	89,6- 100	96,8- 100	100	100	100	100	100
Strongyloiden-Larven	-	-	-	-	100	100	100	100

à Reproduzierbar für Kunststoff-Partikel

Versuchsanlage in Sharjah (VAE): Rückhalt am PET-Gewebe (10 μm)

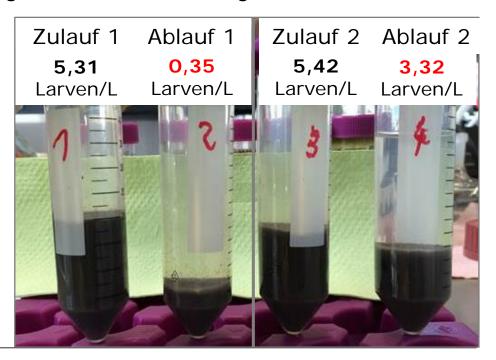
"Extremversuche": Versuchsreihen mit hoher Beaufschlagung sowie starker mechanischer Belastung

- à AFS-Spitzen bis zu ca. 100 mg/L innerhalb weniger Minuten
- à Dauerspül-Intervalle

Großtechnische Mikrosiebanlagen

- Sharjah (Scheibenfilter) à Edelstahl-Gewebe mit 18 μm
 - Rückhalt für Helminthen-Eier zwischen 5 % und 50 %
 - Partikel jeder Größenklasse im Ablauf nachweisbar
- Namibia (Trommelfilter) à Maschengewebe mit 15 μm
 - Rückhalt für Eier / Larven < 25 % (nicht ordnungsgemäße Abdichtung)
 - Rückhalt für Eier / Larven > 93 % (ordnungsgemäße Abdichtung)
- Costa Ballena (Scheibenfilter) à Maschengewebe (PET) mit 10 μm
 - Rückhalt für Helminthen-Eier und Partikel > 98 %
 - Vereinzelt Partikel bis über 33 µm im Ablauf nachweisbar

à Rückhalt von Eiern / Larven variiert erheblich



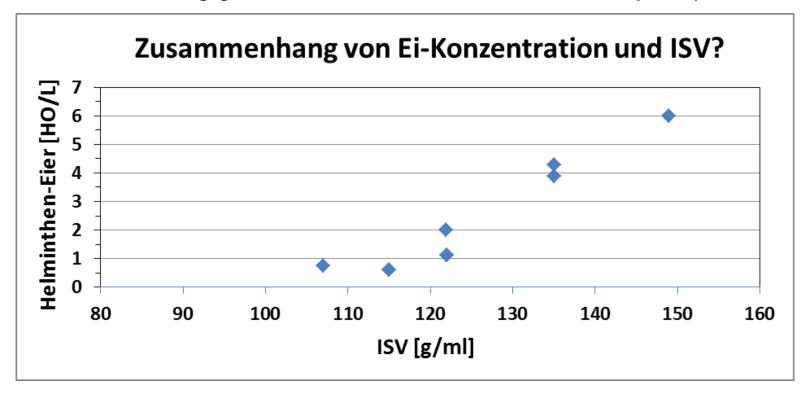
Schlussfolgerungen

- Rückhalt der Eier nur im Labormaßstab zu 100 % möglich
- Z.T. deutliche Abweichungen der Labordaten von Betriebsdaten der halbtechnischen / großtechnischen Anlagen
- Ursache: Leckagen im System

Beispiel

- Zulauf 1 / Ablauf 1
 à fachgerechte Abdichtung
- Zulauf 2 / Ablauf 2
 à fehlerhafte Abdichtung

- à Leckagen resultieren durch
 - Fehler in Betrieb und Wartung
 - fehlende / defekte Abdichtung,
 - möglicher Überlauf in der Zulaufrinne durch Überlastung der Anlage und
 - Löcher / Risse im Siebmaterial.



à Bei Beachtung der Anlagen-Abdichtung sowie ordnungsgemäßem Betrieb und regelmäßiger Wartung können nach den vorläufigen Ergebnissen übliche Grenzwerte eingehalten werden (gültig für Gewebe mit einer Maschenweite von 10 µm und dem eingesetzten Nadelfilz).

• Exkurs: Abhängigkeit der Ei-Konzentration von ISV (AFS) à KA-Ablauf

à Schlammaustrag / hohe AFS-Konzentration à hohe Ei-Konzentration

5. Fazit und Ausblick

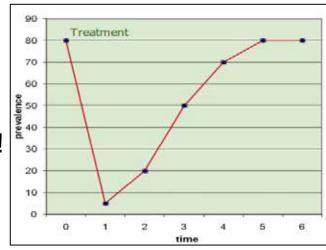
Filtration als vielversprechende Möglichkeit!

- Sehr hoher bis vollständiger Rückhalt am Filtermedium möglich
- Helminthen-Eier befinden sich im Rückspülschlamm
 à geringes Volumen und hohe Konzentration à separate Behandlung

Aber:

- Z.T. Leckagen / Undichtigkeiten in Systemen (Großtechnik) feststellbar
- Defizite bei Wartung und Betriebsweise (Großtechnik)
- Übertragung der Eier vom Wasser- auf den Schlammweg! (z.B. ca. 100 bis 1.000 HO/L im Rückspülschlamm)
- à Weiterer Forschungsbedarf (u.a. Detektion von <u>Leckagen</u>, <u>Ersatzpartikel</u>, <u>Analyseverfahren</u>, Schlammbehandlung)

5. Fazit und Ausblick



Medizinischer Sektor: Hohes Bewusstsein für gesundheitliche Relevanz der Helminthiasis à Einsatz von Anthelminthika

- Beispiel "WHO" für das Jahr 2013:
 à Behandlung von 368 Mio. Schulkindern
- Ziel der WHO:
 Elimination der Helminthen bei Kindern bis 2020!

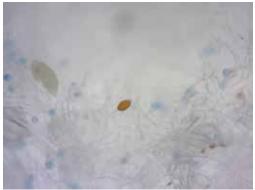
Aber: Hoher Anteil an erneuten Infektionen

à Problem nicht allein durch medikamentöse Behandlung lösbar

["Childrens without Worms", 2010]

(Abb.: Zeitangabe in Monaten)

Abwasserbehandlung kann Beitrag zur Reduktion der Prävalenz leisten!



Prof. Dr.-Ing. Peter Cornel Stefan Kneidl, M.Sc.

TU Darmstadt, Institut IWAR Franziska-Braun-Straße 7 64287 Darmstadt www.iwar.tu-darmstadt.de

p.cornel@iwar.tu-darmstadt.de s.kneidl@iwar.tu-darmstadt.de

GEFÖRDERT VOM

Literatur

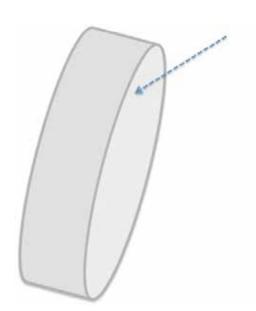
- Ash L.R. und Orthel T.C.: "Ash & Ortel's Atlas of Human Parasitology. "Los Angeles/New Orleans: American Society for Clinical Pathology Press, 2007.
- Aspöck und Hiepe, T.: "Allgemeine Parasitologie mit den Grundzügen der Immunbiologie, Diagnostik und Bekämpfung." MVS Medizinverlage. Vol. 1. Stuttagrt: Theodor Hiepe, Richard Lucius, Bruno Gottstein, 2006.
- Children Without Worms: "WASH in Schools for Comprehensive Control of Intestinal Worms". von Meklit Berhan, 2007. http://www.unicef.org/wash/schools/files/CWW_SWW_Presentation.pdf
- Feachem, R., Bradley T., Garelick H., und Mara D.D.: "Sanitation and Disease Health Aspects of Excreta and Wastewater." Washington D.C.: John Wiley & Sons, 1983.
- Hindiyeh M.Y.: "Integrated Guide To Sanitary Parasitology." Amman, 2004.
- § **Jimenez B.:** "Helminth ova removal from wastewater for agriculture and aquaculture reuse." Water Science & Technology (IWA Publishing), 2007, Vol. 55 (2007): 485-493.
- § Jimenez B. und Chavez A.: "Water Science and Technology." 2002, 95.
- § **Jimenez B. und Maya-Rendon C.:** "*Helminths und Sanitation.*" Environmental Engineering Department, Universidad Nacional Autónoma de México, Coyoacan: Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 2007.
- § Pullan R.L., Smith J.L., Jasrasaria R. und Brooker S.J.: "Global numbers of infection and disease burden of soil transmitted helminth infections in 2010". Parasites & vectors. 2014; 7, Vol. 37.
- Sengupta ME, Thamsborg SM, Andersen TJ, Olsen A, Dalsgaard A.: "Sedimentation of helminth eggs in water." Water Research, Vol. 45 (2011):4651–4660.
- **Sengupta M.E.:** "Sedimentation and resuspension of helminth eggs in water." Dissertation, Faculty of Life Science, University of Copenhagen, Copenhagen, 2012.
- WHO: "Soil-transmitted helminth infections". Fact sheet N°366, Updated May 2015. http://www.who.int/mediacentre/factsheets/fs366/en/

Sinkgeschwindigkeit der Helminthen-Eier

	Experimentelle		Theoretische			
	Sinkgeschwindigkeit		Sinkgeschwindigkeit (Stokes)			
	Mittel	95% CI	Mittel	95% CI		
Ascaris	0,0612 [0,22]	0,0565-0,0658	0,2749 [0,99]	0,2686-0,2813		
Trichuris	0,1487 [0,54]	0,0959-0,2015	0,1292 [0,47]	0,1270-0,1314		
Oesophagostomum	0,1262 [0,45]	0,1069-01454	0,1581 [0,57]	0,1504-0,1613		

nach [Sengupta, 2011]

CI = confidential interval



Analyseverfahren – Teil 1

A) Siebung durch verschiedene Analysensiebe mit den Maschenweite 160 μm, 100 μm und 20 μm / 10 μm

B) Rückgewinnung des Rückstandes von den Analysensieben mit den Maschenweiten 20 µm und 10 µm

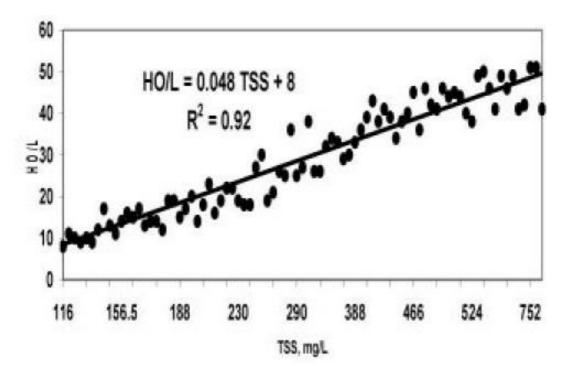
Analyseverfahren – Teil 2

C) "Aufkonzentrierung" des Rückstandes durch Zentrifugation

D) Abtrennung der Eier von den sonstigen Bestandteilen anhand ihrer spezifischen Dichte

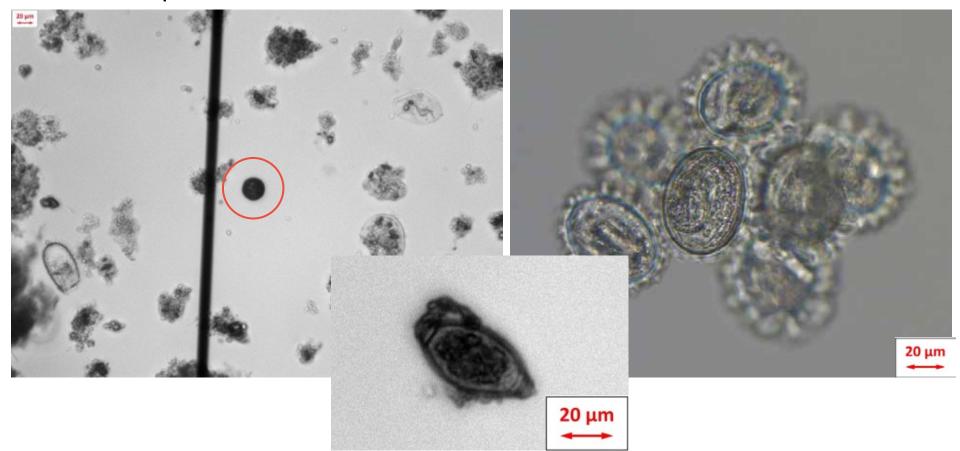
Analyseverfahren – Teil 3

- E) Erneute "Aufkonzentrierung" bis zum Restvolumen von ca. 2-5 mL
- F) Mikroskopische Auswertung mit einer Zählkammer



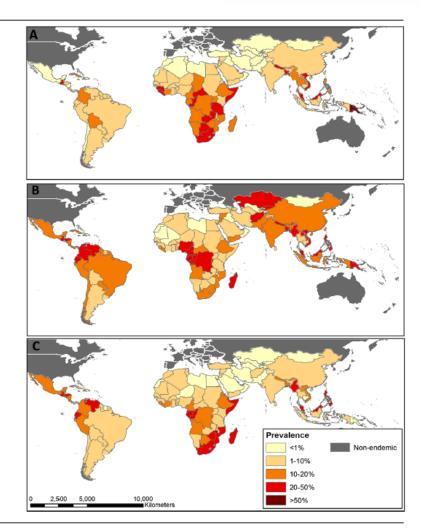
Helminthen-Eier und AFS-Konzentration

 Abhängigkeiten der Ei-Konzentration von der AFS-Konzentration im Zulauf einer Kläranlage


[Jimenez und Chavez, 2002]

Problemstellungen der Analyse / Abscheidung

Mikroskopische Aufnahmen von Eiern / Partikel



Prävalenz

Prävalenz der bodenübertragbaren Helminthen nach Spezies:

- (A) Hakenwürmer
- (B) Ascaris lumbricoides
- (C) Trichuris trichiura

[Pullan et al., 2014]

