

Angepasste Lösungen für die Schlammbehandlung weltweit Statusseminar zum BMBF-Verbundprojekt EXPOVAL

Prof. Dr.-Ing. N. Dichtl, Dipl.-Ing. R. Dellbrügge, M. Eng. R. Mieske, Dr.-Ing. K. Bauerfeld (TU Braunschweig), Dr.-Ing. J. Oles (Oswald Schulze Umwelttechnik GmbH), Dr.-Ing. S. Paris, Dr.-Ing. A. Heindl (Huber SE)

Hannover, 02. Oktober 2015

Inhalt

- § Ziele der Schlammbehandlung
- § Übersicht zum Unterverbund 6
- § AP 1: Anaerobe Schlammstabilisierung
 - § Aktueller Stand der Bemessung
 - § Ergänzungen der Bemessung
 - § Validierung des Modells
- § AP 2: Solare Trocknung und Desinfektion
 - § Aktueller Stand der Bemessung
 - § Hinweise zur Bemessung
 - § Betriebshinweise
 - § Validierung des Modells
- § Schlussfolgerung und Ausblick

Ziele der Schlammbehandlung

Intensivierung der Schlammfaulung

Geringe Rückbelastungen

Hohe Faulgasproduktion

Abbau der
Organik

Gute Entwässerbarkeit

Solare Klärschlammtrocknung

Thermische Desinfektion

UV 6:

Klärschlammmanagement

- In warmen und kalten Klimaregionen
- Unter Einfluss erhöhter Salzgehalte

AP 1:

Anaerobe Schlammstabilisierung

- Anlagenvalidierung im Betriebsbereich 25°C +
- Bemessungsempfehlung für Faulanlagen

AP 2:

Solare Trocknung und Desinfektion

- Validierung klimahydrologischer Bemessungsgrundlagen
- Entwicklung einer Pilotanlage zur Desinfektion

UV 6: Standorte

	Konya, Türkei	Kayseri, Türkei*	Cali, Kolumbien	Klodzko, Polen
Klima	Warmgemäßigt, sommertrocken	Warmgemäßigt, sommertrocken	Wintertrockenes tropisches Regenwaldklima	Feuchttemperiertes Klima mit langem Winter
Ausbaugröße Kläranlage	1.000.000 EW Q _d = 200.000 m ³ /d	800.000 EW $Q_d = 110.000 \text{ m}^3/\text{d}$ (2. Ausbaustufe auf 1.4 Mio EW)	2.000.000 EW Q _d = 656.600 m ³ /d	$Q_d = 12.500 \text{ m}^3/\text{d}$
Verfahrenstechnik Abwasserreinigung	Belebtschlamm- verfahren (C- Abbau, Nitrifikation), UV- Desinfektion des Ablaufs	Belebtschlammver- fahren mit Bio-P, Nitrifikation und Denitrifikation	ChemPhysikal. (Erweiterung geplant)	Belebtschlammver- fahren (C-Abbau, Nitrifikation)
Verfahrenstechnik Schlammbehandlung	Eindickung PS+ÜSS, Faulung bei 35°C, Entwässerung FS (Zentrifuge)	Simultan aerobe Stabilisierung des ÜSS, Eindickung PS, Faulung PS bei 37 °C, Entwässerung FS (Bandfilterpresse)	Faulung PS, Entwässerung FS (Bandfilterpresse), SKT mit Fußbodenheizung	Simultan aerobe Stabilisierung, stat. Eindickung, Entwässerung (Zentrifuge), SKT mit Fußbodenheizung

^{*} Teilweise KfW-gefördert

AP 1:

Anaerobe Schlammstabilisierung

AP 1: Anaerobe Schlammstabilisierung Einflussfaktoren auf die Schlammbemessung

Schlammanfall und Charakteristik

DWA-M 368 (2014):

- Mindest-Stabilisierungsziel: technische Faulgrenze $\eta_{abb} \approx 85 \% \ (\equiv \eta_{oTR} \approx 40 \%)$
- Beschickung mit einem TR_{RS} von 4 ... 8 %
- Bemessungsschlammalter in Abhängigkeit von Anlagengröße und organischen Schlammbelastung
- Empfehlungen: zweistufige Betriebsweise bei T_{Faul} ≈ 35 °C
- Möglichst detailreiche Datengrundlage zum täglichen Schlammanfall, Feststoffgehalt erforderlich
- Zeitlich auftretende Schwankungen der Schlammfrachten?
- Bemessungsschlammanfall über das Maximum des gleitenden 2-Wochen-Mittelwertes

GEFÖRDERT VOM

AP 1: Anaerobe Schlammstabilisierung Ergänzende Hinweise zur Bemessung

Ergänzende Hinweise aus EXPOVAL für internationale Standorte:

! Anaerobe Stabilisierung bei T < 35 °C möglich !

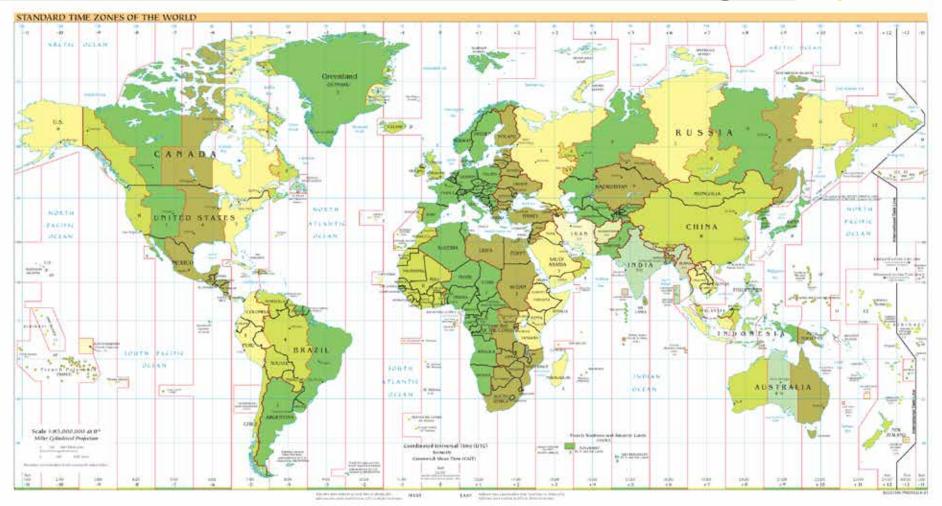
- → Faulbehälter ohne Wärmedämmung?
- → Angepasster Sommer-Winterbetrieb an den Energiebedarf der KA

Festlegung des Stabilisierungsziels in Abhängigkeit von:

- klimatische Rahmenbedingungen (T_{Luff}, Windstärke)
- Monetäre Leistungsfähigkeit des Investors (Hightech oder Lowtech)

Auswertung für T_{Faul} < 35 °C durch:

- Energiebilanz mittels Klimadaten T_{Luft} (durchschnittlicher Tages- und Nachtwert)
- Sicherheitsfaktoren für (Kläranlagengröße und Windeinfluss)



AP 1: Anaerobe Schlammstabilisierung Bau von Faulstufen ohne Wärmedämmung

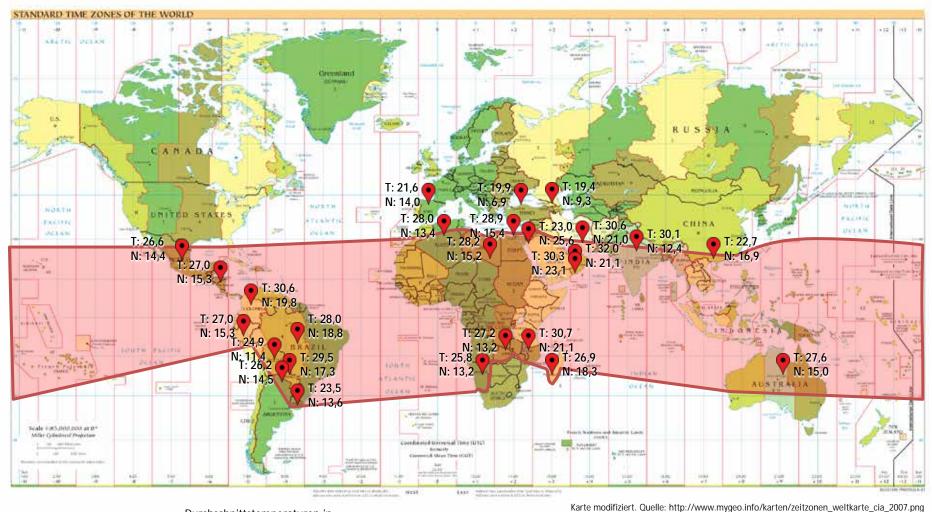
Quelle: http://www.mygeo.info/karten/zeitzonen_weltkarte_cia_2007.png

AP 1: Anaerobe Schlammstabilisierung Bau von Faulstufen ohne Wärmedämmung

Durchschnittstemperaturen in

T = durchschnittliche Tagestemperatur in [°C]

N = durchschnittliche Nachttemperatur in [°C]

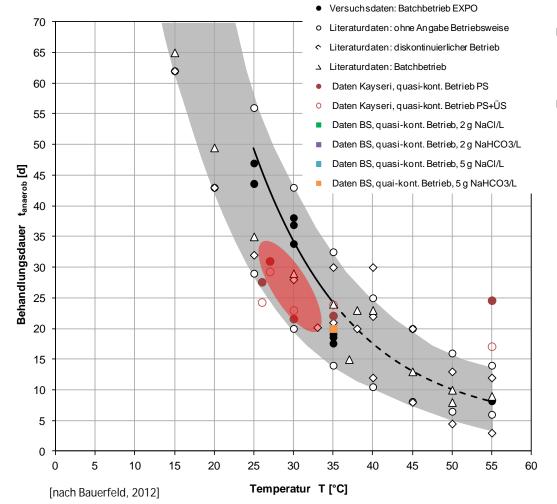


AP 1: Anaerobe Schlammstabilisierung Bau von Faulstufen ohne Wärmedämmung

Durchschnittstemperaturen in

T = durchschnittliche Tagestemperatur in [°C]

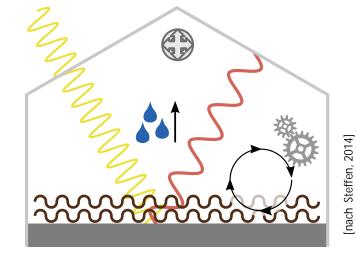
N = durchschnittliche Nachttemperatur in [°C]



AP 1: Anaerobe Schlammstabilisierung Validierung des Modells

- ü Festlegung der Stabilisierungsziels:
 - Reduzierung von 40 % der oTM
- Ü Festlegung zweier niedrig-mesophiler Temperaturbereiche:
 - 25 bis 30 °C (ohne Wärmedämmung)
 - 30 bis 35 °C (mit Wärmedämmung)

AP 2: Solare Trocknung


GEFÖRDERT VOM

AP 2: Solare Klärschlammtrocknung Bemessung

Bestehende Bemessungsansätze

- Keine Bemessungsvorschrift vorhanden
- Existierendes technisches Regelwerk (ATV-DVWK-M 379, 2004;
 Wastewater Engineering, 2014) beschreibt lediglich Einsatzbereich für die solare Trocknung
- Anlagenplanung anhand klimahydrologischer Modelle, Klärschlammvolumen und Feststoffflächenbelastung bzw. verdunstende Wassermenge (Wasserbilanz)
 - z.B. nach Turc, Penman, FAO (Erfahrungswerte und weiterführende Arbeiten im Rahmen von EXPO, 2009 und Bauerfeld, 2012)

AP 2: Solare Klärschlammtrocknung Bemessung

Erweiterung des Bemessungsansatzes

- Verwendung der von Wendling veränderten Penman-Formel auf Basis des Ansatzes von Turc
- Integration folgender Faktoren:
 - f_{lw} [-]: Faktor zur Berücksichtigung des Luftwechsels
 - α [-]: Transmissionskoeffizient des Eindeckungsmaterials
 - R_G* [J/cm²]: Energieinput aus Solarstrahlung und Zusatzheizung
 - T* [°C]: Erhöhung der Außentemperatur aufgrund des Gewächshauseffektes

$$E_{p,SKT} = \frac{f_{lw} \cdot (\alpha R_G^* + 93 \cdot f_k) \cdot (T^* + 22)}{150 \cdot (T^* + 123)} \quad \left[\frac{kg}{m^2 \cdot a}\right]$$

Das Modell setzt eine nicht wassergesättigte Luft voraus

à bis auf wenige Stunden nachts war das während der gesamten Trocknungszeit der Fall

AP 2: Solare Klärschlammtrocknung Bemessung

Bemessung der Trocknungsfläche

- Ermittlung der potenziellen Verdunstung E_{p,SKT} [kg/(m²xd)] anhand von Materialkennwerten, Klima- und Betriebsdaten
- Aus vorhandenem Eingangs-TR, vorhandener Schlammmenge (entwässert) und gewünschtem Austrags-TR ergibt sich die notwendige Verdunstung E_{soll} [t/a]

$$E_{soll} = M \cdot \left(1 - \frac{TR_{ein}}{TR_{aus}}\right) \quad \left[\frac{t}{a}\right]$$

3. Berechnung der notwendigen Trocknungsfläche A [m²]

$$A = \frac{E_{soll} \cdot 1000}{E_{p,T-W}} \quad [m^2]$$

4. Diese Bemessung setzt einen Speicher zum Ausgleich unterschiedlicher Verdunstungsleistungen im Jahresgang voraus, sollte dies nicht der Fall sein, erhöht sich die Fläche entsprechend (Speichertrockner)

$$A = \frac{\frac{E_{soll} \cdot 1000}{12}}{Min E_{p,SKT}} \quad [m^2]$$

AP 2: Solare Klärschlammtrocknung Planerische und betriebliche Aspekte

Jahresgang klimatischer Einflussfaktoren

- Jahreszeitliche Schwankungen werden durch Monatsmittelwerte (Temperatur) und Monatssummen (Strahlung) berücksichtigt
- Bei großen Temperaturschwankungen ist es sinnvoll einen Speicher für die kalte Jahreszeit einzuplanen
- Durch einen Fremdwärmeeintrag kann auch in der kalten Jahreszeit eine Trocknung stattfinden

Betriebssteuerung

- Schichtdicke: bei regelmäßigem Wenden kein Einfluss auf den Trocknungsfortschritt im Bereich von 5 bis 20 cm
- Wendeintervall: ohne Einfluss auf den Trocknungsprozess, im tropischen Verkleben des Schlammes bei häufiger als 1x pro Stunde und Entwicklung von Fliegenlarven bei seltener als alle 4 Stunden wenden

AP 2: Solare Klärschlammtrocknung Planerische und betriebliche Aspekte

Betriebssteuerung

- Zusatzheizung: Vergleichmäßigung der Trocknungsgeschwindigkeit
 - In tropischen Gebieten in der Regenzeit und nachts sinnvoll
 - In kalten Klimaten im Winter sinnvoll
 - Sinnvoll bei vorhandenen Abwärmequellen

Eigenschaften des solar getrockneten Klärschlamms

	Gemäßigtes Klima	Tropisches Klima	Kaltgemäßigtes Klima		
Organik	Abbau um ca. 5% (vollstabilisierter Schlamm)	Abbau um ca. 5% (teilstabilisierter Schlamm) bis ca. 15 % (Bauerfeld, 2012)	Abbau um ca. 3% (teilstabilisierter Schlamm) bis ca. 10 % (Bauerfeld, 2012)		
Schwermetalle	Konstant über den Trocknungsprozess				
Nährstoffe	Konstant über den Trocknungsprozess				
Pathogene Mikroorganismen (eigene Ergebnisse)	Keine Aussage zu Helminthen, da nicht vorhanden	Sicheres Abtöten von Helminthen Reduktion Coliforme	Keine Aussage zu Helminthen, da nicht vorhanden		
	Reduktion Coliforme um 2 log-Stufen	um 2-3 log-Stufen	Reduktion Coliforme um 0,5-1 log-Stufen		

AP 2: Solare Klärschlammtrocknung Validierung des Modells

Standort		Penzing	Cali	Klodzko
Anmerkungen		TR: 17% à 65%	TR: 31% à 85% Mit FBH nachts	TR: 23% à 67% Mit FBH bei Frost
Tatsächliche Verdunstung, Versuchsanlage	[kg/(m²×a)]	854	2390	*)
Tatsächliche Verdunstung, Großtechnik	[kg/(m²×a)]	666 (749)	1772	616
Berechnete Verdunstung	[kg/(m²×a)]	643	1525	542
Vorhandene Fläche, Großtechnik	[m²]	810 (ca. 720 genutzt)	3680	892
Berechnete Fläche, Großtechnik	[m ²]	941	4297	975

*) Hochrechnung auf Jahresverdunstung aus den Messungen im Winter/Frühjahr nicht zielführend

AP 2: Thermische Desinfektion Planerische und betriebliche Aspekte

Kriterien nach EPA 503: mind. 30 Min. bei mind. 70°C, mind. 90% TR

 Ventilator mit Heizregister zum Austrag von Feuchtigkeit und zusätzlichem Energieeintrag (T > 70°C)

Ergebnisse bei Betrieb mit 100 % Drehzahl:

Ø Aufenthaltszeit: 80 Minuten

Ø Förderrate: 70 kg/h

Ø Einhaltung der EPA-Kriterien

Ø Erreichung einer sicheren Desinfektion

Schlussfolgerung und Ausblick

- § Abweichend vom Temperaturoptimum ist die Realisierung eines dynamischen Faulbetriebs möglich
- § Einsparung von Investitionskapital durch Verzicht auf Faulbehälterisolierung
- Mit klimahydrologischen Modellansätzen lässt sich die notwendige Trocknungsfläche für verschiedene Randbedingungen zu > 90 % (Halbtechnik), und > 80% (Großtechnik) abbilden.
- § Auch im gemäßigten Klima ohne Fremdwärmeeinsatz ist ein hoher **Wasseraustrag über Jahresausgleich** erzielbar, im Winter überwiegt allerdings **Speicher(trocknung).**
- § Die Betriebsführung in der dargestellten Varianz (Schichtdicke, Wendeintervall) scheint auf die Trocknungsgeschwindigkeit keinen Einfluss zu haben, innerhalb der dargestellten Bereiche ist ein sicherer Trocknungserfolg gewährleistet.
- § Eine thermische Desinfektion nach solarer Trocknung ist möglich
 - Ø Sowohl die anaerobe Stabilisierung als auch die solare Trocknung sind für gemäßigte und warme Klimate geeignete Verfahren.
 - Ø Durch Berücksichtigung betrieblicher Aspekte (z.B. Zusatzwärme) ist der Einsatz aller Verfahren auch in kalten Klimaregionen möglich.

Kontakt

Vielen Dank der Forschungsförderung des BMBF.

Prof. Dr.-Ing. Norbert Dichtl (n.dichtl@tu-bs.de)

M. Eng. Robert Mieske (r.mieske@tu-bs.de)

Dipl.-Ing. Rosa Dellbrügge (r.dellbrügge@tu-bs.de)

Dr.-Ing. Katrin Bauerfeld (k.bauerfeld@tu-bs.de)

Quellenangaben

- ATV-DVWK-M 379, 2004. Klärschlammtrocknung. Stand 02/2004. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef
- Bauerfeld, K. 2012. Einfluss klimatischer Randbedingungen auf die Klärschlammbehandlung. Dissertation am Institut für Siedlungswasserwirtschaft der TU Braunschweig.
- Bauerfeld, K., Dockhorn, T., Dichtl, N. 2009. Klärschlammbehandlung und –verwertung unter anderen klimatischen und sonstigen Randbedingungen. Schlussbericht zum BMBF-Vorhaben EXPO, TP 4. Förderkennzeichen 02WA0733.
- Dellbrügge, R., Bauerfeld, K., Paris, S., Großer, A. 2014. Technology transfer-oriented research and development in the wastewater sector - validation at industrial-scale plants" (BMBF-EXPOVAL) – Subgroup 6: Solar sewage sludge drying. First results from investigations with a pilot plant. Singapore Water Week, 01.-05.06.2014, Singapur.
- DWA-M 368, 2014. Biologische Stabilisierung von Klärschlamm, Stand 05/2014. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., Hennef
- Schneider, J. 2014. Inbetriebnahme einer Versuchsanlage zur thermischen Desinfektion und erste Untersuchungen zu Verfahrenstechnik und Desinfektionsleistung. Bachelorarbeit am Institut für Siedlungswasserwirtschaft der TU Braunschweig.
- Steffen, L. 2014. Untersuchungen zum Einfluss betrieblicher Randbedingungen auf die solare Klärschlammtrocknung.
 Bachelorarbeit am Institut für Siedlungswasserwirtschaft der TU Braunschweig.
- Tchobanoglous, G., Stensel, H. D., Tsuchihashi, R., Burton, F. 2014. Wastewater Engineering: Treatment and Resource Recovery (Metcalf & Eddy), Fifth Edition. Mc. Graw-Hill, New York
- US Environmental Protection Agency, 2007: Part 503 Standards of the use and disposal of sewage sludge, Title 40: Protection of Environment. Cincinnati, USA
- Wendling, U., Schellin, H.-G., Thomä, M. 1991. Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Zeitschrift für Meteorologie, Band 41, Jahrgang 1991, pp. 468-475.
- Abgebildete Fotos sind, soweit nicht anders gekennzeichnet, vom ISWW der TU BS.

