

GEFÖRDERT VOM

Das BMBF-Verbundprojekt EXPOVAL: Bemessung von Kläranlagen für warme und kalte Klimate

Prof. Dr. Holger Scheer, Dr. Tim Fuhrmann, Peter Wulf Emscher Wassertechnik GmbH, Essen

Inhalt

- 1. Die Ausgangsstellung
- 2. Das EXPOVAL-Verbundprojekt
- 3. Randbedingungen für die Untersuchungen
- 4. Bemessungsrelevante Einflussfaktoren
- 5. Ausblick

1. Ausgangsstellung

GEFÖRDERT VOM

Einerseits:

- Den Problemen mit der weltweit gesehen völlig unzureichenden Abwasserreinigung kommt eine immer größere Bedeutung zu.
- Diese Probleme können sicherlich mit den Auswirkungen des Klimawandels auf selbiger Augenhöhe gesehen werden.
 - => Bedarf an abgesicherten Bemessungsgrundlagen für den internationalen Markt ist zwingend vorhanden.

Anderseits:

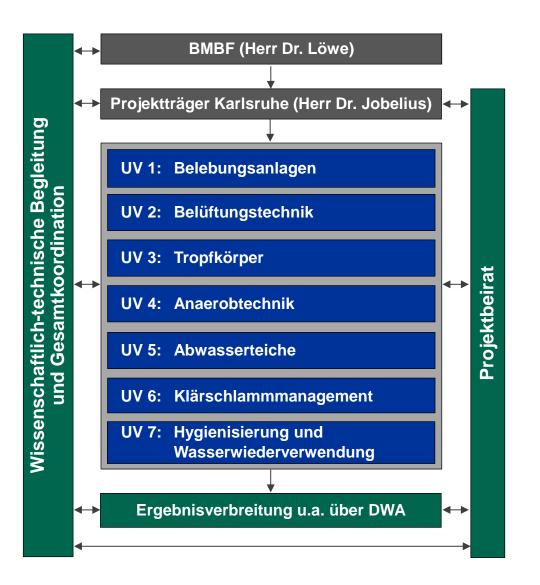
 In Deutschland existiert ein umfangreiches, bewährtes Regelwerk zur Bemessung von Abwasseranlagen.

Anwendbarkeit des deutschen Regelwerks weltweit?

Situation in anderen Ländern

Lokal abweichende Randbedingungen, unter anderem:

- Temperatur (Abwasser / Luft)
- Abwasserzusammensetzung
- Salzkonzentration
- Anforderungen an die Ablaufqualität
- Überwachungspraxis des Kläranlagenablaufs
- Betriebliche Aspekte


Anpassungsbedarf des deutschen Regelwerks vorhanden (z.B. neue A 131 gilt nur für 8 - 20 °C!)

direkt bemessungsrelevant!

2. Das EXPOVAL-Verbundprojekt

- 7 thematische Unterverbünde
- Schwerpunkt auf kommunalen Abwasserbehandlungsverfahren
- Einbindung von:
 - 6 Universitäten
 - 11 gewerblichen Unternehmen
 - DWA
- Verbundprojekt:
 Universität + Industriepartner
 - → Anwendungsorientierte Lösungen
 - → Austausch Wissenschaft/Industrie

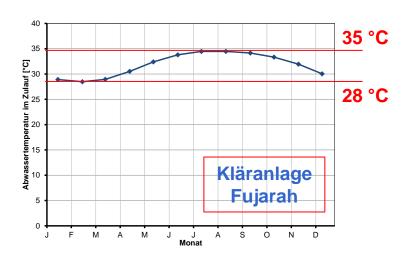
Projektpartner (1/2)

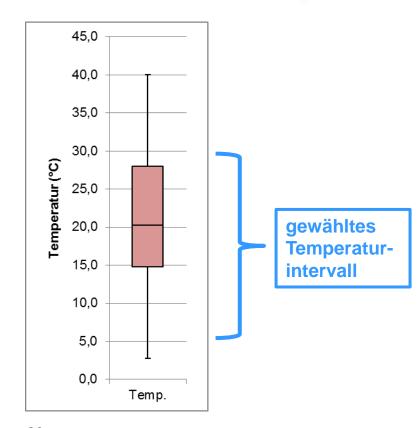
Unterverbund	Beteiligte
UV 1:	Ruhr-Universität Bochum (Prof. Dr. M. Wichern)
Belebungs-	Emscher Wassertechnik GmbH
anlagen	Hach-Lange GmbH
UV 2:	Technische Universität Darmstadt (Prof. Dr. M. Wagner)
Belüftungssysteme	Bilfinger Water Technologies GmbH
UV 3:	Universität Stuttgart (Prof. Dr. H. Steinmetz)
Tropfkörper	GEA 2H Water Technologies GmbH, Büro Hürth
UV 4:	Universität Hannover (Prof. Dr. KH. Rosenwinkel)
Anaerobverfahren	aqua & waste International GmbH
	Hach-Lange GmbH
UV 5: Abwasserteiche	IEEM gGmbH - Institut für Umwelttechnik und Management an der Universität Witten/Herdecke (Prof. Dr. mult. KU. Rudolph)
	FUCHS Enprotec GmbH
	Ultrawaves Wasser- und Umwelttechnologien GmbH
	Xylem Water Solutions Herford GmbH (assoziierter Partner)

Projektpartner (2/2)

Unterverbund	Beteiligte	
UV 6:	Technische Universität Braunschweig (Prof. Dr. N. Dichtl)	
Klärschlamm- management	Huber SE	
	Oswald Schulze Umwelttechnik GmbH	
UV 7:	Technische Universität Darmstadt (Prof. Dr. P. Cornel)	
Wasserwieder- verwendung und Hygienisierung	Huber SE	

Unterverbund	Beteiligte
Koordination	Emscher Wassertechnik GmbH (Prof. Dr. H. Scheer und Dr. T. Fuhrmann)
	Technische Universität Darmstadt, Institut IWAR (Prof. Dr. P. Cornel und Prof. Dr. M. Wagner)
	Leibniz Universität Hannover, Institut ISAH (Prof. Dr. KH. Rosenwinkel und Frau Dr. M. Beier)
Öffentlichkeits- arbeit / Ergebnis- verbreitung	Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V.


3. Randbedingungen für die Untersuchungen

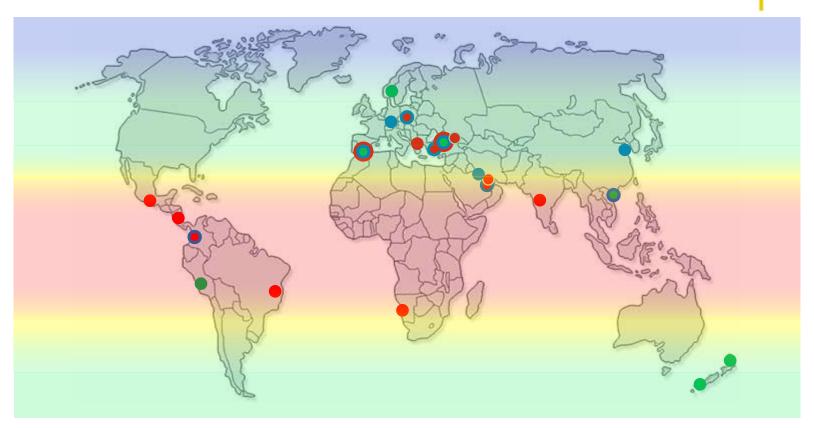

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Zentrale Vorgaben für alle Abwasserbehandlungsverfahren:

- Abwassertemperatur: 5 30 °C
- Salzgehalte bis 10 g/l
- (begrenztes) Set von Eingangsparametern
- Tagesmittelwerte im Kläranlagenablauf als Bemessungsgrundlage

Abwassertemperatur an den Untersuchungsstandorten



Untersuchungsstandorte (1/2)

GEFÖRDERT VOM

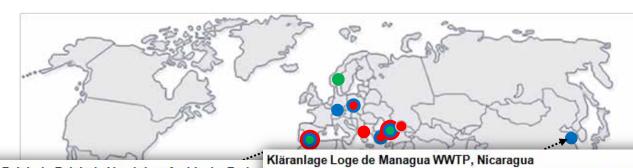
Bundesministerium für Bildung und Forschung

Jahresmitteltemperatur

- Tropen (25°C)
- Subtropen (18°C)
- Gemäßigte Zone (8°C)
- Kalte Zone (0°C)

- Versuchsanlage
- Großtechnische Anlage
- Datenübernahme

Untersuchungsstandorte (2/2)


GEFÖRDERT VOM

Versuchsanlage

Großtechnische Anlage

Datenübernahme

Kläranlage Fujairah, Fujairah, Vereinigte Arabische Emirat

Kläranlage Licunhe, Qingdao, China

Untersuchung an halbtechnischer Anlage (UV 2: Belüftungstechnik)

her Anlage (UV 3: Tropfkörper)

Untersuchung an großtechnischer Anlage (UV 1: Belebungsanlagen)

4. Bemessungsrelevante Einflussfaktoren

4.1 Eingangsdaten für die Zulaufbelastung

GEFÖRDERT VOM

Auswertung von Zulaufdaten der EXPOVAL-Untersuchungsstandorte (vorläufig)

	Abwassertemp. (°C)			mittlere Konzentrationen im Zulauf (mg/l)				
	min	max	CSB _{hom}	BSB ₅	TS	N _{ges}	NH₄-N	P_{ges}
Fujairah, VAE	26	33	680	370	320			8
Aguas Blancas, Mexiko	23	33	340	150	120	45		
Haikou, China	21	28	260	100	250	26	19	5
Qingdao, China	12	25	990			64	43	14
Managua, Nicaragua	30	34	770	379	400	39	18	7
Al Aweer, Dubai, VAE	30	33	580	250	250	48	34	
Batumi, Georgien	11	22	240		150	26		5
Walvis Bay, Namibia			1.200			45		
Pogradec, Albanien	10	20		90				
Nashik, Indien	23	30	280	250			20	
Sitra, Bahrain, VAE	21	30	340		100		22	
Itabira, Brasilien	18	28	770		330			
Chiclana, Spanien			920	360	470	79		12
Sevilla, Spanien	8	28	590	350		57	43	9
Invercargill, Neuseeland	3	24	330	230	290	39	26	8
Kayseri, Türkei	11	24	820	360	410	70		8
Konya, Türkei	8	24	820	430	430	87		13
Cali, Kolumbien			320	150	170			4
Kłodzko, Polen	9	14	400	170	170	37	24	4
Sharjah, VAE	18	40	780		275		34	11
Minimum	3	19	240	90	100	26	18	4
Mittelwert	17	27	602	250	270	51	28	8
Maximum	30	40	1.200	430	470	87	43	14
Deutschland	10	20	400 - 800	200 - 400	250 - 500	40 - 80	25 - 50	6 - 12

Eingangsdaten für die Zulaufsituation im Ausland

- Kanal-Einzugsgebiete häufig noch im Bau => anfallende Abwassermengen daher oft nicht repräsentativ
- Hoher Anteil an Trennsystemen, insbesondere in ariden Gebieten
- Undichte Kanalnetze können zu hohem Fremdwasseranfall und erhöhten Salzkonzentrationen (z.B. in Bandar Abbas) führen
- Hoher Trinkwasserverbrauch und damit hoher einwohnerspez.
 Abwasseranfall (niedrige TW-Tarife, "Wasser hat keinen Wert")
- Vermehrte Stoffumsetzungsprozesse im Kanalnetz auf Fließweg zur Kläranlage (lange Fließzeiten, hohe Temperaturen)
- Vielerorts große Frachten an Sand und an absetzbaren Stoffen (z.B. Kürbiskernspelzen) im Kläranlagenzulauf

4.1 Eingangsdaten für die Zulaufbelastung

GEFÖRDERT VOM

- => große Unterschiede im Einzelfall
- => Messungen der Abwasserzusammensetzung vor Ort unbedingt erforderlich
- => geschätzte Angaben zu EW und Q reichen nicht aus!
- => Literaturwerte möglichst nur ergänzend

Bei den Bemessungsansätzen: Vereinheitlichung der Eingangsparameter (z.B. CSB anstelle vom BSB₅)

4. Bemessungsrelevante Einflussfaktoren

4.2 Anforderungen an die Ablaufqualität

Weltweit werden völlig unterschiedliche Anforderungsniveaus in Bezug auf die Kohlenstoff- und Stickstoffelimination gestellt:

- a) nur Kohlenstoffelimination
- b) Kohlenstoffelimination mit teilweiser Stickstoffelimination (Nitrifikation)
- c) Kohlenstoffelimination mit weitergehender Stickstoffelimination (z. B. Nitrifikation und Denitrifikation)

Parameter	Ein- heit	Bsp. zu a) Monte- negro	Bsp. zu b) Iran	Bsp. zu c) VAE	Bsp. zu c) Germany (≥100 T EW)
CSB	mg/l	125	-	50	75
BSB ₅	mg/l	25	25	10	15
TS, AFS	mg/l	35	30	10	-
NH ₄ -N	mg/l	-	10	1	10
N _{ges}	mg/l	-	-	30	13
P _{ges}	mg/l	-	-	2	1

4.2 Anforderungen an die Ablaufqualität

GEFÖRDERT VOM

Wahl des auszuwählenden Reinigungsverfahrens in Abhängigkeit der Reinigungsziele

Reinigungsverfahren	Kohlenstoff- Elimination	Nitrifikation	Denitrifikation
Belebungsverfahren	X	X	X
Tropfkörperverfahren	X	X	(X)
Teichverfahren	X	(X)	
Anaerobverfahren (z.B. UASB)	(X)		

4.2 Anforderungen an die Ablaufqualität

GEFÖRDERT VOM

Ausgewählte Verfahrenskombinationen für Kohlenstoffelimination und weitergehende Stickstoffelimination (Nitrifikation und Denitrifikation)

C-Elimination	Nitrifikation	Denitrifikation		
Belebungsverfahren				
Tropfkörperverf	Biofilmverfahren			
Tropfkörperverf	Belebungsverfahren			
Teichverfahren	Biofilmverfahren			
Anaerobverfahren	Belebu	ngsverfahren		

4.2 Anforderungen an die Ablaufqualität

GEFÖRDERT VOM

Länder-/Anlagenspez. stark abweichende Reinigungsanforderungen (C-Elimination, Nitrifikation, Denitrifikation, Phosphorelim.)

Zusätzliche Parameter (z. B. Coliforme, Helmintheneier)

Einhaltung bestimmter Reinigungsziele (z.B. niedrige NH₄-N-Konz.) ist bei einigen Reinigungsverfahren (z.B. Teichanlagen) nur durch Kombination von mehreren Reinigungsverfahren (z.B. Teichanlage und Tropfkörper) möglich

4. Bemessungsrelevante Einflussfaktoren 4.3 Überwachungsmethode

GEFÖRDERT VOM

Bei der Überwachung der Ablaufanforderungen in verschiedenen Ländern zeigen sich generell zahlreiche Unterschiede:

- Art der Anforderung an die Verschmutzungsparameter (Maximalkonzentration oder prozentuale Mindestfrachtminderung)
- Art der Definition einzelner Parameter
 (z. B. Summenparameter für Stickstoff mit oder ohne organischem Anteil)
- Häufigkeit der Probenahme (Anzahl pro Jahr)
- Probenahmezeiträume bzw. Bezugszeiträume
 (Stichproben, 2-Stunden-Mischproben, Tagesmischproben, Jahresmittelwerte)
- Bewertung der Ergebnisse der Probenahme
 (zulässige Anzahl von Proben mit Abweichungen, maximal zulässige Abweichungen je Probe)

GEFÖRDERT VOM

Deutsche Überwachungspraxis

- 2-h-Mischprobe oder qualifizierte Stichprobe
- "4-von-5-Regel" (§ 6 (1) der AbwV)
 Reinigungsanforderungen gelten als eingehalten, wenn die Ergebnisse der 5 letzten Überprüfungen in 4 Fällen den maßgebenden Wert nicht überschreiten und kein Ergebnis den Wert um mehr als 100 % übersteigt

Deutsche Überwachungspraxis findet international keine Anwendung!

Deutsche Überwachungspraxis ist im DWA-Regelwerk (z.B. im alten und im neuen Arbeitsblatt A 131) bemessungstechnisch berücksichtigt (=> Auslegung auf Einhaltung in der Ablaufspitze)

GEFÖRDERT VOM

Vergleich der deutschen und der europäischen Regelung am Beispiel kommunaler Kläranlagen mit 100.000 EW und Einleitung in empfindliche Gebiete:

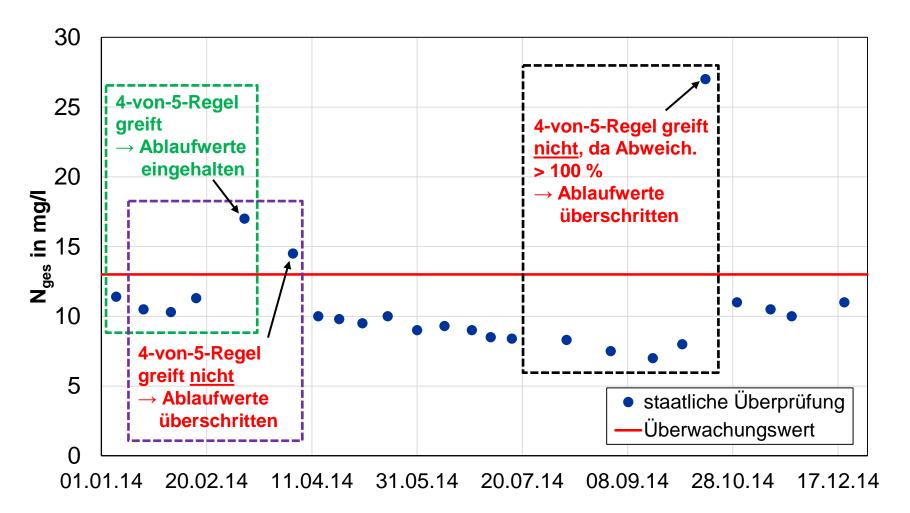
Kriterien	deutsche Abwasser- verordnung AbwV	EU-Richtlinie 91/271/EWG
Art der Probennahme	2-h-Mischprobe oder qualifizierte Stichprobe	24-h-Mischprobe (Tagesmischprobe)
Einhaltungskriterium	"4-von-5-Regel": Abweichung bei max. 1 von 5 Proben	Tabelle 3: max. 3 Abweichungen bei 24 Proben/a*
Max. Abweichung	100 %	100 %

^{*} Anzahl Abweichungen abhängig von Probenanzahl und Anzahl Proben abhängig von Anlagengröße

GEFÖRDERT VOM

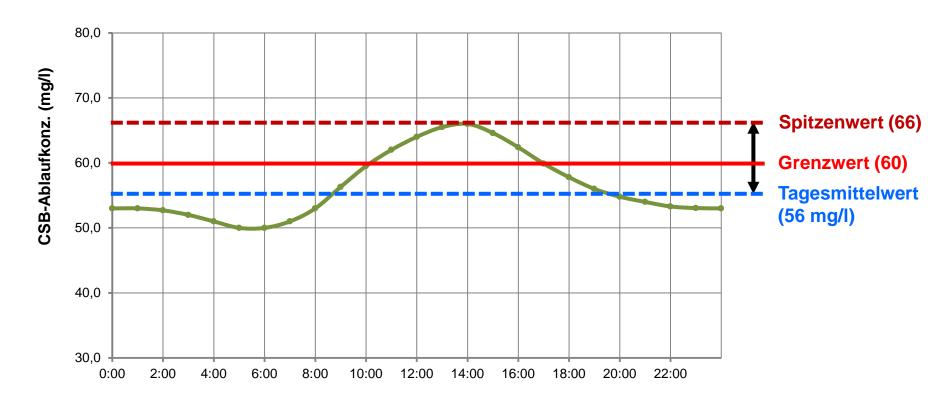
Vergleich der deutschen und der europäischen Regelung am Beispiel kommunaler Kläranlagen mit 100.000 EW und Einleitung in empfindliche Gebiete:

Anforderungen	deutsche Abwasser- verordnung AbwV	EU-Richtlinie 91/271/EWG
Max. N _{anorg.} - Ablaufkonz.	13 mg/l N in der 2-h- Mischprobe/qualifizier- ten Stichprobe	10 mg/l N als Jahresmittelwert auf Basis von Tages-MP
Prozentuale N-Elimination	≥ 70 % N-Elimination auf Basis von Tagesmittelwerten	70 - 80 % N-Elimination auf Basis von Jahresmittelwerten*
		20 mg/l N als Tagesmittelwert


^{* =}Jahresmittelwert (mg N/I) = Σ Messergebnisse (mg N/I) / Σ Probenanzahl

GEFÖRDERT VOM

Zulässige Anzahl abweichender Proben auf Basis der qualifizierten Stichprobe



GEFÖRDERT VOM

Qualifizierte Stichprobe im Vergleich zum Tagesmittelwert

CSB-Konz. (mg/l)

nach EU 91/271/EWG: Grenzwert eingehalten nach (deutscher) AbwV: Grenzwert nicht eingehalten

Die Art der Überwachungspraxis hat einen großen Einfluss auf die Dimensionierung der Kläranlage.

Eine nicht angepasste Bemessung nach deutschen Randbedingungen führt im Ausland zu unwirtschaftlichen Überdimensionierungen.

5. Ausblick

- Laufzeit des vom BMBF geförderten Projekts endet im Oktober 2016
- Präsentation von Ergebnissen auf verschiedenen Veranstaltungen,
 u. a. IFAT 2016 in München
- Aufbereitung der Ergebnisse erfolgt bis September 2016 im neuen DWA-Themenband
- Abschlussveranstaltung findet am 05. und 06. Oktober 2016 in Essen statt
- Zunächst freuen wir uns auf das heutige und morgige Statusseminar mit den aktuellen Zwischenergebnissen

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Weitere Informationen

Projekt-Website: www.expoval.de

GEFÖRDERT VOM

Vielen Dank für Ihre Aufmerksamkeit

Gesamtkoordination:

- § Prof. Dr.-Ing. habil. Holger Scheer: scheer@ewlw.de
- § Dr.-Ing. Tim Fuhrmann: fuhrmann@ewlw.de
- § Dipl.-Ing. Peter Wulf: wulf@ewlw.de

Danksagung:

Die Realisierung des EXPOVAL-Verbundvorhabens wurde Dank der Förderung durch das BMBF (FKZ 02WA1252A ff.) möglich.

Unser besonderer Dank gilt Herrn Dr. Löwe vom BMBF sowie Herrn Dr. Jobelius, Frau Dr. Höckele und Herrn Dr. Kautt vom Projektträger Karlsruhe, Bereich Wassertechnologie und Entsorgung